NASCRE-5 Oral Presentation Program

Sunday, Feb 16: Workshops (11:30-16:30) and Welcome Reception (18:00-19:30)

		Day 1: Monday, February	y 17	
8:15-9:15 AM	Plenary 1: Developing Strategies for Polymer Redesign and Recycling Using Reaction Pathway Analysis Linda Broadbelt (Northwestern University)			
9:15-9:30 AM	Refreshment Break			
9:30-10:30 AM		Plenary: Amundsor		
0.00 10.007 111	A Personal Journey to Reaction Engineering: From Multiscale Modeling to Sustainable Processes Dion Vlachos (University of Delaware)			
10:30-10:45 AM		Refreshme		
	Room 1	Room 2	Room 3	Room 4
	Polymer Upcycling Chairs: Kim McAuley (Queens University), Michele Sarazen (Princeton)	Fundamentals of CRE Chairs: Hilal Ezgi Toraman (Penn State), Gregory Patience (Polytechnique Montreal)	Reaction Engineering for the Energy Transition: 1 Chairs: Pavel Kots (NYU), Daniel Trahan (Dow)	Novel Reactors and Process Intensification: 1 Chairs: Chris Paolucci (UVa), Dongxia Liu (U. Delaware)
10:45-11:05 AM	Revealing the Role of Mass Transfer–Chemical Kinetics Coupling in Neat and Catalytic High-Density Polyethylene Pyrolysis; M. Doga Tekbas	Keynote: HARNESSING COUPLED REACTION- TRANSPORT PHENOMENA TO DEVELOP STABLE AND SELECTIVE ZEOLITE CATALYSTS FOR OLEFIN OLIGOMERIZATION TO TRANSPORTATION FUELS; Rajamani Gounder	MODELING OF A HEAT- INTEGRATED BIOMASS DOWNDRAFT GASIFIER WITH CONSTRUCTION AND DEMOLITION WASTE AS FEEDSTOCK; Houda Haidar	Microfluidic Laser- Induced Nucleation of Iron (II, III) Oxide Nanoparticle-Doped Supersaturated Aqueous KCI solutions; Kelechi Ndukwe- Ajala
11:05-11:25 AM	Understanding Reaction	LENGTH EFFECTS	Radio Frequency	Novel modular, layered
	Environments in Mechanocatalytic Processes; <i>Kinga Golabek</i>	ON PRCFD-DERIVED FIXED-BED RADIAL HEAT TRANSFER PARAMETERS; ANTHONY DIXON	Heating of Catalytic Propane Dehydrogenation: Finite Element Approach, Techno-Economic, and Environmental Assessment. Ankush Rout	rector for continuous, scalable, efficient hydrogenation; <i>Lorenzo Milani</i>
11:25-11:45 AM	H ₂ -Free Conversion of Condensation Polymers with Organic H2 Carriers - Kinetic Coupling of Hydrogenolysis and Dehydrogenation Pathways; <i>Manish Shetty</i>	Mechanistic and Kinetic Role of Pd in the Co-Production of Ethylene and Acetic Acid from Ethane over Pd-MoV Oxides; Joseph Lane	CAPITALIZING ON BIPHASIC SYSTEMS FOR THE REACTION WITH IN SITU EXTRACTION OF SUGARS TO FURANS: SOLVENT SELECTION AND REACTION MODELLING; Dominik Soukup-Carne	MECHANISTIC ASPECTS OF SELECTIVE HYDROGEN COMBUSTION (SHC) OVER NA₂WO₄/SIO₂ CATALYSTS; Elijah Kipp
11:45-1:15 PM		Lunch or		
1:15-2:15 PM	Panel Discussion: 'Academia-Government-Industry: Advancing Reaction Engineering at the Interfaces Facilitator: Nick Thornburg (NREL) Panelists: Jean Tom (Princeton University), Fabio Ribeiro (Purdue University), Simon Bare (SLAC), Triantafillos J. Mountziaris (University of Houston)			
2:15-2:30 PM	Discussion 1 CDT 1	Refreshme		Name I Day 1
	Pioneers in CRE: 1 Chairs: Ryan Hartman (NYU), Moiz Diwan (AbbVie)	Fundamentals of CRE Chairs: Nitish Mittal (ExxonMobil), Udit Gupta (Siemens)	Reaction Engineering for the Energy Transition: 2 Chairs: Hsu Chiang (Oxy), Joseph Dewilde (Dow)	Novel Reactors and Process Intensification: 2 Chairs: Rajamani Gounder (Purdue), Eric Sacia (AbbVie)

2:30-2:50 PM	Elucidating complex interactions in non-thermal plasma-assisted reactions on (supported) porous catalysts Michele Sarazen	Redefining Bi- reforming of Methane at a Molecular Level Through Specific Metal-Support Interactions; Meghana Sucharita Idamakanti	Decarbonization of Hydrogen Supply Chain via Electrification: Methane Reforming and Ammonia Decomposition Ram Ratnakar	Forced Dynamic Operation of Propylene Selective Oxidation on Bismuth- Molybdate Structured Catalysts: Experiments and Modeling; Mohammad Moniruzzaman
2:50-3:10 PM	Fast-Cat: A Self-Driving Catalysis Lab for Autonomous Reaction Pareto Front Mapping <i>Milad Abolhasani</i>	A new method for the simulation of catalyst deactivation in fluidized bed reactors; Andrea Pappagallo	Catalytic and Inhibitory Effects Induced by Noncovalent Interactions between Cellulose and Lignin During Fast Pyrolysis; Fuat Sakirler	SELECTIVE CHEMICAL LOOPING COMBUSTION OF ACETYLENE IN ETHYLENE-RICH STREAMS; Matthew Jacob
3:10-3:30 PM	Effect of Blending Hydrogen with Natural Gas on Selective Catalytic Reduction of NOx for Stationary Power Applications Bihter Padak	Quantifying Reaction- Diffusion Rates of Nonoxidative Coupling of Methane per Active Edge Sites of Two- Dimensional Pt Nanolayer Catalysts; Tobias Misicko	HIGHLY EFFICIENT AND STABLE IRON MOLYBDATE ELECTROCATALYST TOWARDS OXYGEN EVOLUTION REACTION UNDER ALKALINE CONDITIONS; FNU Vidhi	CO ₂ absorption kinetics measurements: conversion of a stirred tank to a Lewis cell; Jonathan Sheavly
3:30-3:50 PM		Refreshme	nt Break	
3:50-4:10 PM	Pioneers in CRE: 2 Chairs: Ryan Hartman (NYU), Moiz Diwan (AbbVie) Electrocatalytic Synthesis and Utilization of Nitrates for Resilient Nitrogen Circular Economy Meenesh Singh	Fundamentals of CRE Nitish Mittal (ExxonMobil), Udit Gupta (Siemens) FROM PULSES TO PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT KINETIC ANALYSIS AND MULTISCALE MODELING; Nicholas Thornburg	Reaction Engineering for the Energy Transition: 3 Chairs: Hsu Chiang (Oxy), Joseph Dewilde (Dow) Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability; Yichen Zhuang	Novel Reactors and Process Intensification: 3 Chairs: Fateme Rezaei (U. Miami), Onkar Manjrekar (Abbvie) Applications of Countercurrent Multiphase Reactors for Maximizing Performance James R. Lattner
4:10-4:30 PM	Catalytic consequences of plastic additives on bifunctional reactions of alkanes Gina Noh	Polymer Distribution Models for Polyether Polyols; Arjun Raghuraman	Electrification of Steam Methane Reforming by Joule Heating of Nickel- Coated High-Resistance Wires; Elmer Ledesma	Overcoming the Selectivity-Conversion Tradeoff during Forced Dynamic Operation of Ethane Oxidative Dehydrogenation; Austin Morales
4:30-4:50 PM	Kate Bjorkman (Lanzajet)	From Apparent Kinetics to Microkinetics: Leveraging Power duLaw Models for Reaction Mechanism Identification; Fernando Vega- Ramon	BENCH-SCALE MULTI- TUBULAR MEMBRANE CONTACTOR REACTOR FOR FUEL PRODUCTION; Mohammad Bazmi	IGNITION- EXTINCTION ANALYSIS OF OXIDATIVE DEHYDROGENATION OF ETHANE OVER M1 CATALYST IN A MONOLITH REACTOR; Dhagash M. Pandit

		Day 2: February 1	8	
8:15-9:15 AM	Plenary 2: Current Trends and Opportunities for Reaction Engineering to Impact the Pharmaceutical R&D Pipeline Shailendra Bordawekar, AbbVie			
9:15-9:30 AM	Refreshment Break			
9:30-10:30	Plenary: Aris Award Lecture			
AM	Т		gens in the Energy Transition	1
		Praveen Bollini (Uni		
10:30-10:45		Refreshme	ent Break	
AM				
	Room 1	Room 2	Room 3	Room 4
	Computational Chemistry and Catalysis,	Automation/Digitization in Reaction	Reaction Engineering for the Energy	Novel Reactors and Process
	Data Science, ML: 1	Engineering: 1	Transition: 4	Intensification: 4
	Milad Abolhasani (NCSU),	Chairs: Jake Gold (Dow),	Chairs: Hsi-Wu Wong	Chairs: Fateme Rezaei
	Gaurav Giri (ÙVa)	Meenesh Singh (UIC)	(UMass Lowell), Kevin	(U. Miami), Onkar
			Modica (Dow)	Manjrekar (Abbvie)
40.45.44.05	Literary Marie and an Marie linear	Advantage of Allbarad	DVALANAIO	La alta ala anata da
10:45-11:05 AM	Using Molecular Modeling and Machine Learning to	Advantages of Al-based models over mechanistic	DYNAMIC OPTIMIZATION OF	In-situ characterization of Ni-BaH ₂ catalyst for low
Aivi	Address Stability	models in the dynamic	ELECTRIFIED ETHANE	temperature ammonia
	Challenges for Zeolite	optimization of fixed- and	CRACKING FOR COST-	production through
	Catalysts	fluidized-bed reactors;	EFFECTIVE ETHYLENE	chemical looping;
	Chris Paolucci	Mauro Andrea	PRODUCTION WITH	Antoine Dechany
		Pappagallo	LOW CO ₂ EMISSIONS;	
11:05-11:25	Application of surrogate	HYBRID MODELLING	Alexandre Cattry Towards the complete	METHANE PARTIAL
AM	modelling to accelerate	FOR THE DYNAMIC	mineralization of PFOA	OXIDATION (MPO)
, dvi	design space exploration	SIMULATION OF	with a pilot-scale UV-	UNDER PERIODIC
	for catalytic reactor	WATER GAS SHIFT	light, boron-nitride—	REACTION
	systems;	AND METHANOL	based recirculating	CONDITIONS ON
	Stepan Spatenka	SYNTHESIS	reactor unit;	PT/AL ₂ O ₃ ;
		REACTIONS	Juan Donoso	Surya Solanki
		NETWORK; <i>Harry Kay</i>		
11:25-11:45	Advantages in the use of	Investigating a Novel		IGNITION THRESHOLD
AM	Al-based regressions for	Flash Thermal		OF ARGON DILUTED
	the kinetic modelling of	Racemisation Reaction		METHANE IN
	industrial catalysts;	Operated Under		ATMOSPHERIC
	Hugo Petremand	Transient Flow Regimes through Kinetic		PLASMA-LIQUID MULTIPHASE
		Modelling;		MICROREACTOR;
		Harry Kay		Sudip Das
11:45-1:15 PM		Lunch o	on own	
1:15-2:15 PM	Pan	el Discussion: Vision 2050: F	Reaction Engineering Roadm	ар
		Facilitator: Ryan	Hartman (NYU)	
2:15-2:30 PM	Panelists: Dan Hickman (Dow), Kim McAuley (Queen Refreshme	s University), Michael Harol	d (University of Houston)
2.10-2.30 PIVI	In Honor of the	Automation/Digitization	Reaction Engineering	Novel Reactors and
	Amundson Awardee: 1	in Reaction	for the Energy	Process
	Chairs: Ashish	Engineering: 2	Transition: 5	Intensification: 5
	Mhadeshwar	Chairs: Alan	Chairs Jeremy Bedard	Chairs: Saurabh
	(ExxonMobil), Jeffrey	Stottlemeyer (Dow), Ram	(Oxy), Nick Thornburg	Bhandari (Dow), Jiakang
	Rimer (University of Houston)	Ratnakar (Shell)	(NREL)	Chen (BASF)
2:30-2:50 PM	Reaction Engineering: The	Keynote	1071: MICROKINETIC	Forced Dynamic
	ISCRE Board's 2050		MODELING OF	Operation of Propylene
	Perspective		OXIDATIVE COUPLING	Selective Oxidation to
	Dan Hickman		OF METHANE: CAN	Acrolein in Catalytic
			BREAK THE SCALING	Foam Reactor: Reactor Model Development
			RELATIONSHIP?;	Kai Wu
			Julian Ufert	
2:50-3:10 PM	Propane Dehydrogenation	APPLICATION OF	Thermodynamic Analysis	Can methanol synthesis
	in Electrifiable Carbon	DYNAMIC REACTION	Based Programmed	be enhanced at low
	Membrane Reactor	SCREENING AND	Heating Strategies to	pressure with continuous
L	Dongxia Liu	DEVELOPMENT OF A 2-	Limit Carbon Depositions	operation?;

		D REACTOR MODEL	in Electrified Modular	Chiara Berretta
		FOR ACCURATE	Methane Reformer	Chiara Berretta
		KINETIC ANALYSIS IN	Reactors:	
		_	l '	
		TUBULAR REACTORS;	Collins Don-Pedro	
0.40.0.00.00.004	M III D 1 01 1	Daniel Trahan	IOODOTENTIAL	
3:10-3:30 PM	Multiple Rate States in	Model-Based Fault	ISOPOTENTIAL	Experimental and
	Precious Metal Catalyzed	Diagnosis for Closed-	TITRATION OF	modeling of reactive
	Oxidation Reactions:	loop Feedback controlled	AMMONIA ELECTRON	distillation applied for an
	Kinetic Requirements,	Safety-Critical Chemical	TRANSFER ON METAL	immobilized enzymatic
	Multiplicity Features and	Reactors: An	CATALYSTS;	reaction coated on
	Rate Determining Steps	Experimental Study;	Jesse Canavan	structured internals;
	Michael P. Harold	Pu Du		Nicolas Chaussard
3:30-3:50 PM		Refreshme		
	In Honor of the	Automation/Digitization	Reaction Engineering	Computational
	Amundson Awardee: 2	in Reaction	for Materials Synthesis	Chemistry and
	Chairs: Ashish	Engineering: 3	Jeremy Bedard (Oxy),	Catalysis, Data
	Mhadeshwar	Chairs: Alan	Nick Thornburg (NREL)	Science, ML
	(ExxonMobil), Jeffrey	Stottlemeyer (Dow), Ram		Chairs: Saurabh
	Rimer (University of	Ratnakar (Shell)		Bhandari (Dow), Jiakang
	Houston)			Chen (BASF)
3:50-4:10 PM	Joule heated structured	Digital Twin Concept For	Mechanistic Insights into	COMPUTATIONAL
	reactors:	Hydrogen Production	Metal-Organic	INSIGHTS INTO THE
	combining electrification	From Biogas,	Framework Formation	ADSORPTION
	with process intensification	Razieh Etezadi	from In-Situ X-Ray	BEHAVIOR OF H2 AND
	Enrico Tronconi		Scattering Data	CO2 ON CU AND ZNO
			Gaurav Giri	SURFACES FOR
				METHANOL
				SYNTHESIS;
				Haseen Siddigui
4:10-4:30 PM	Advancing Product	CatTestHub: A	A NOVEL PLASMA	First principles insights
	Analysis and Polymer	Benchmarking Database	ENHANCED CHEMICAL	into effect of charge
	Recycling Strategies with	of Experimental	VAPOR DEPOSITION	condensation on water
	Two-Dimensional Gas	Heterogeneous Catalysis	(PECVD) REACTOR	gas shift reaction
	Chromatography	and Insights for	` SYSTEM FOR	mechanism:
	(GC×GC)	Methanol	FABRICATION OF SIC-	Venkata Rohit Punyapu
	Hilal Ezgi Toraman	Decomposition;	TYPE CERAMIC FILMS	
		Atharva Burte	AND MEMBRANES;	
		7.0	Farnaz Tabarkhoon	
4:30-4:50 PM	Intensification of polyolefin	From Laboratory to Pilot:	Synthesis of Brightly	Machine Learning for
	plastic waste	Digital Design Case	Fluorescent ZnSe	Parametric Sensitivity of
	hydroconversion in small	Study for Cost Effective	Quantum Dots using Air-	Chemical Reactors:
	alkane solvents	Catalytic Reactor Scale	Stable Precursors;	Joaquin Herrero
	Pavel Kots	Up;	Ali Rad	2 Suquii Hellelo
	7 47 67 11013	Shahin Goodarznia	All Nau	
		Channi Goodal Zina		

Tuesday, Feb 18: Conference Banquet (18:00-21:30)

Day 3: February 19				
8:15-9:15 AM	Plenary 3: Towards Electrifying Chemical Manufacturing Using Electrolysis			
	Paul Kenis			
9:15-9:30 AM	Refreshment Break			
	Room 1	Room 2	Room 3	Room 4
	CO2 Capture and	Biopharmaceutical	General Reaction	General Reaction
	Conversion: 1	Reaction Engineering:	Engineering: 1	Engineering: 2
	Chairs: Gina Noh (Penn	1	Chairs: Sribala	Chairs: David Simakov
	State), Sweta Somasi	Chairs: Bryan Patel	Gorugantu (UH),	(U. Waterloo), Carsten
	(Corteva)	(Exxon), Jane Shi	Sukaran Arora (Dow)	Sievers (Georgia Tech)
	•	(Dow)	, ,	
9:30-9:50 AM	Reactive Carbon Capture:	Development of	Academic-Industry	1093PROXIMITY
	Cooperative and	continuous	Sabbaticals: An	EFFECTS FOR
	Bifunctional Adsorbent-	hydrogenation for	Academic Reaction	IMPROVING ETHYL
	Catalyst Materials and	pharmaceutical	Engineer's	ACETATE
	Process Integration for a	intermediate from	Perspective;	SELECTIVITY IN THE
	New Carbon Economy	Laboratory to Pilot	Ryan Hartman	DEHYDROGENATIVE
	Fateme Rezaei	plant;		COUPLING OF

9:50-10:10 AM 1019: Barriers to Carbon 1055: DEVELOPMENT 1052: Enhancing	THANKS OVER
9:50-10:10 AM 1019: Barriers to Carbon 1055: DEVELOPMENT 1052: Enhancing	ETHANOL OVER
	SUPPORTED CU
	CATALYSTS;
	Varad Joshi 1079: Impact of
Dioxide Utilization OF Accuracy in Particle Inte	ermediate Transfer
1	ates. Metal Cation
RELEVANT Modeling of Fixed Bed	Mobility, and
	lydrocarbon Pool
	echanisms on the
	es and Selectivity for
FLOW CHEMISTRY: Dvnamics:	Tandem CO2
	ogenation to Olefins
	and Fuels;
	Fatima Mahnaz
	RELATIONSHIP
REACTION PATHWAYS. DEMONSTRATION OF MOLECULAR E	BETWEEN THE
INTERMEDIATES, AND AN ULTRA-HIGH ARCHITECTURES IN OBS	SERVED REACTION
SITE REQUIREMENTS TEMPERATURE ALKOXYSILANE	KINETICS OF
FOR CO2 METHANATION CONTINUOUS HYDROLYSIS AND	ETHYLENE TO
OVER NI-CE MIXED RACEMIZATION CONDENSATION: E1	THYLENE OXIDE
	WITH COMPLEX
	LORINATION AND
UNDESIRED CONSIDERATIONS;	PROCESS
	NDITIONS EFFECT;
WASTE STREAM;	Jake Gold
Kiersten Campbell 10:30-10:45 PM Refreshment Break	
	eneral Reaction
	Engineering: 4
	airs: David Simakov
	Waterloo), Carsten
	vers (Georgia Tech)
(Dow)	(
10:45-11:05 PM DEVELOPMENT OF DUAL Transport-Kinetic PROMOTIONAL	Optimization of
FUNCTION MATERIALS Modeling of a Double ROLE OF ACID SITES tem	perature profiles in
	O2 methanation
OF CO2 FROM DILUTE Production of an Active ALUMINOSILICATE-	reactors by an
	ropriate selection of
	italyst and dilution
SELECTIVITY: Neda Nazemifard	agent;
	Matteo Percivale
Anh To	netic Modeling and
Anh To N 11:05-11:25 PM ENHANCED AUTOMATED CATALYTIC CO- Kin	Optimization of a
Anh To 11:05-11:25 PM ENHANCED AUTOMATED CATALYTIC CO- PERFORMANCE OF DISCOVERY OF PYROLYSIS OF	
Anh To 11:05-11:25 PM ENHANCED AUTOMATED CATALYTIC CO-PERFORMANCE OF CU/ZRO2 CATALYSTS IN ENZYMATIC PYROLYTIC OILY Phar	rmaceutical Process
Anh To 11:05-11:25 PM ENHANCED AUTOMATED CATALYTIC CO-PERFORMANCE OF CU/ZRO2 CATALYSTS IN CO2 HYDROGENATION REACTION KINETICS SLUDGE WITH with	rmaceutical Process h Uncertain Inputs;
Anh To 11:05-11:25 PM ENHANCED AUTOMATED CATALYTIC CO-PERFORMANCE OF CU/ZRO2 CATALYSTS IN CO2 HYDROGENATION TO METHANOL; USING SYMBOLIC BIOMASS FOR Im.	rmaceutical Process
Anh To 11:05-11:25 PM ENHANCED AUTOMATED CATALYTIC CO-PERFORMANCE OF CU/ZRO2 CATALYSTS IN CO2 HYDROGENATION TO METHANOL; Wohd Moiz Khan REGRESSION AND RESOURCE AUTOMATED CATALYTIC CO-PYROLYSIS OF PYROLYSIS OF PYROLYTIC OILY Phar With With REACTION KINETICS SLUDGE WITH With REGRESSION AND RESOURCE	rmaceutical Process h Uncertain Inputs;
Anh To 11:05-11:25 PM ENHANCED PERFORMANCE OF CU/ZRO2 CATALYSTS IN CO2 HYDROGENATION TO METHANOL; Mohd Moiz Khan AUTOMATED DISCOVERY OF ENZYMATIC REACTION KINETICS USING SYMBOLIC REGRESSION AND RESOURCE MODEL-BASED RECOVERY;	rmaceutical Process h Uncertain Inputs;
Anh To 11:05-11:25 PM ENHANCED PERFORMANCE OF CU/ZRO2 CATALYSTS IN CO2 HYDROGENATION TO METHANOL; Mohd Moiz Khan MODEL-BASED DISCOVERY OF ENZYMATIC PYROLYSIS OF PYROLYTIC OILY PHAR SLUDGE WITH With RESOURCE REGRESSION AND RESOURCE RECOVERY; Himanshi Sharma	rmaceutical Process h Uncertain Inputs;
Anh To 11:05-11:25 PM ENHANCED PERFORMANCE OF CU/ZRO2 CATALYSTS IN CO2 HYDROGENATION TO METHANOL; Mohd Moiz Khan AUTOMATED DISCOVERY OF ENZYMATIC REACTION KINETICS USING SYMBOLIC REGRESSION AND RESOURCE MODEL-BASED RECOVERY;	rmaceutical Process h Uncertain Inputs;