NASCRE-5 Oral Presentation Program

Sunday, Feb 16: Workshops (11:30-16:30) and Welcome Reception (18:00-19:30)

		Day 1: Monday, February	<i>y</i> 17	
8:15-9:15 AM	Plenary 1: Developing Strat	egies for Polymer Redesig	ın and Recycling Using Reac	tion Pathway Analysis
0.13-9.13 AW	Theriary 1. Developing Strat	Linda Broadbelt (Norti		HOITT alliway Allalysis
9:15-9:30 AM		Refreshme		
9:30-10:30 AM	A Damas and Jacom souts D	Plenary: Amundsor		ainahla Duassasa
	A Personal Journey to R	Dion Vlachos (Unive	n Multiscale Modeling to Sust ersity of Delaware)	ainable Processes
10:30-10:45 AM		Refreshme		
	Room 1	Room 2	Room 3	Room 4
	Polymer Upcycling Chairs: Kim McAuley	Fundamentals of	Reaction Engineering	Novel Reactors and
	(Queens University),	CRE Chairs: Hilal Ezgi	for the Energy Transition: 1	Process Intensification: 1
	Michele Sarazen (Princeton)	Toraman (Penn State),	Chairs: Pavel Kots	Chairs: Chris Paolucci
	, ,	Gregory Patience	(NYU), Daniel Trahan	(UVa), Dongxia Liu (U.
		(Polytechnique Montreal)	(Dow)	Delaware)
10:45-11:05 AM	Revealing the Role of Mass	Keynote:	MODELING OF A HEAT-	Microfluidic Laser-
	Transfer–Chemical Kinetics	HARNESSING	INTEGRATED BIOMASS	Induced Nucleation of
	Coupling in Neat and	COUPLED	DOWNDRAFT	Iron (II, III) Oxide
	Catalytic High-Density Polyethylene Pyrolysis; <i>M.</i>	REACTION- TRANSPORT	GASIFIER WITH CONSTRUCTION AND	Nanoparticle-Doped Supersaturated
	Doga Tekbas	PHENOMENA TO	DEMOLITION WASTE	Aqueous KCl
		DEVELOP STABLE	AS FEEDSTOCK;	solutions;
		AND SELECTIVE	Houda Haidar	Kelechi Ndukwe-
		ZEOLITE CATALYSTS FOR OLEFIN		Ajala
		OLIGOMERIZATION		
		ТО		
		TRANSPORTATION		
		FUELS; <i>Rajamani Gounder</i>		
11:05-11:25 AM	Understanding Reaction	LENGTH EFFECTS	Radio Frequency	Novel modular, layered
	Environments in	ON PRCFD-DERIVED	Heating of Catalytic	rector for continuous,
	Mechanocatalytic Processes;	FIXED-BED RADIAL HEAT TRANSFER	Propane Dehydrogenation: Finite	scalable, efficient hydrogenation;
	Kinga Golabek	PARAMETERS;	Element Approach,	Lorenzo Milani
		ANTHONY DIXON	Techno-Economic, and	
			Environmental	
			Assessment. Ankush Rout	
11:25-11:45 AM	H ₂ -Free Conversion of	Mechanistic and	CAPITALIZING ON	MECHANISTIC
	Condensation Polymers with	Kinetic Role of Pd in	BIPHASIC SYSTEMS	ASPECTS OF
	Organic H2 Carriers - Kinetic Coupling of	the Co-Production of Ethylene and Acetic	FOR THE REACTION WITH IN SITU	SELECTIVE HYDROGEN
	Hydrogenolysis and	Acid from Ethane over	EXTRACTION OF	COMBUSTION (SHC)
	Dehydrogenation Pathways;	Pd-MoV Oxides;	SUGARS TO FURANS:	OVER NA ₂ WO ₄ /SIO ₂
	Manish Shetty	Joseph Lane	SOLVENT SELECTION	CATALYSTS;
			AND REACTION MODELLING;	Elijah Kipp
			Dominik Soukup-Carne	
11:45-1:15 PM		Lunch or	n own	
1:15-2:15 PM	Panel Discussion: 'Acader		Advancing Reaction Enginee	ring at the Interfaces
	Panelists: Jear	Facilitator: Nick The Tom (Princeton Universit	y), Fabio Ribeiro (Purdue U	niversitv).
	Simon Bare	(SLAC), Triantafillos J. M	Mountziaris (University of Ho	ouston)
2:15-2:30 PM	B: : :	Refreshme		N 15
	Pioneers in CRE: 1	Fundamentals of CRE	Reaction Engineering for the Energy	Novel Reactors and Process
		Nitish Mittal	Transition: 2	Process Intensification: 2
		(ExxonMobil), Udit	Chairs: Hsu Chiang	Chairs: Rajamani
		Gupta (Siemens)	(Oxy), Joseph Dewilde	Gounder (Purdue),
	<u> </u>		(Dow)	Eric Sacia (AbbVie)

2:30-2:50 PM	Elucidating complex interactions in non-thermal	Redefining Bi- reforming of Methane	Decarbonization of Hydrogen Supply Chain	Forced Dynamic Operation of
	plasma-assisted reactions on (supported) porous catalysts	at a Molecular Level Through Specific Metal-Support	via Electrification: Methane Reforming and Ammonia Decomposition	Propylene Selective Oxidation on Bismuth- Molybdate Structured
	Michele Śarazen	Interactions; Meghana Sucharita Idamakanti	Ram Ratnakar	Catalysts: Experiments and Modeling; Mohammad
				Moniruzzaman
2:50-3:10 PM	Fast-Cat: A Self-Driving Catalysis Lab for Autonomous Reaction	A new method for the simulation of catalyst deactivation in	Catalytic and Inhibitory Effects Induced by Noncovalent Interactions	SELECTIVE CHEMICAL LOOPING COMBUSTION OF
	Pareto Front Mapping <i>Milad Abolhasani</i>	fluidized bed reactors; Andrea Pappagallo	between Cellulose and Lignin During Fast Pyrolysis; Fuat Sakirler	ACETYLENE IN ETHYLENE-RICH STREAMS; Matthew Jacob
3:10-3:30 PM	Effect of Blending Hydrogen with Natural Gas on Selective Catalytic	Quantifying Reaction- Diffusion Rates of Nonoxidative Coupling	HIGHLY EFFICIENT AND STABLE IRON MOLYBDATE	CO ₂ absorption kinetics measurements:
	Reduction of NOx	of Methane per Active	ELECTROCATALYST	conversion of a stirred
	for Stationary Power Applications	Edge Sites of Two- Dimensional Pt	TOWARDS OXYGEN EVOLUTION	tank to a Lewis cell; Jonathan Sheavly
	Bihter Padak	Nanolayer Catalysts; Tobias Misicko	REACTION UNDER ALKALINE	,
		TODIAS MISICRO	CONDITIONS;	
3:30-3:50 PM		Refreshme	nt Break	
0.00 0.00 1	Pioneers in CRE: 2	Fundamentals of	Reaction Engineering	Novel Reactors and
		CRE Nitish Mittal	for the Energy Transition: 3	Process Intensification: 3
		(ExxonMobil), Udit	Chairs: Hsu Chiang	Chairs: Fateme Rezaei
		Gupta (Siemens)	(Oxy), Joseph Dewilde	(U. Miami), Onkar
			(Dow)	Manjrekar (Abbvie)
3:50-4:10 PM	Electrocatalytic Synthesis	FROM PULSES TO	Experimental Analysis of	Applications of
3:50-4:10 PM	and Utilization of Nitrates for Resilient Nitrogen Circular	PELLETS TO PACKED BEDS:	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas	Applications of Countercurrent Multiphase Reactors
3:50-4:10 PM	and Utilization of Nitrates for Resilient Nitrogen Circular Economy	PELLETS TO PACKED BEDS: UNDERSTANDING	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas:	Applications of Countercurrent Multiphase Reactors for Maximizing
3:50-4:10 PM	and Utilization of Nitrates for Resilient Nitrogen Circular	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and	Applications of Countercurrent Multiphase Reactors
3:50-4:10 PM	and Utilization of Nitrates for Resilient Nitrogen Circular Economy	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability;	Applications of Countercurrent Multiphase Reactors for Maximizing Performance
3:50-4:10 PM	and Utilization of Nitrates for Resilient Nitrogen Circular Economy	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and	Applications of Countercurrent Multiphase Reactors for Maximizing Performance
3:50-4:10 PM	and Utilization of Nitrates for Resilient Nitrogen Circular Economy	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability;	Applications of Countercurrent Multiphase Reactors for Maximizing Performance
3:50-4:10 PM	and Utilization of Nitrates for Resilient Nitrogen Circular Economy	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/AI2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT KINETIC ANALYSIS AND MULTISCALE	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability;	Applications of Countercurrent Multiphase Reactors for Maximizing Performance
3:50-4:10 PM	and Utilization of Nitrates for Resilient Nitrogen Circular Economy	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT KINETIC ANALYSIS AND MULTISCALE MODELING;	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability;	Applications of Countercurrent Multiphase Reactors for Maximizing Performance
3:50-4:10 PM 4:10-4:30 PM	and Utilization of Nitrates for Resilient Nitrogen Circular Economy Meenesh Singh Catalytic consequences of	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT KINETIC ANALYSIS AND MULTISCALE MODELING; Nicholas Thornburg Polymer Distribution	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability; Yichen Zhuang Electrification of Steam	Applications of Countercurrent Multiphase Reactors for Maximizing Performance James R. Lattner
	and Utilization of Nitrates for Resilient Nitrogen Circular Economy Meenesh Singh	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT KINETIC ANALYSIS AND MULTISCALE MODELING; Nicholas Thornburg	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability; Yichen Zhuang	Applications of Countercurrent Multiphase Reactors for Maximizing Performance James R. Lattner
	and Utilization of Nitrates for Resilient Nitrogen Circular Economy Meenesh Singh Catalytic consequences of plastic additives on bifunctional reactions of alkanes	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT KINETIC ANALYSIS AND MULTISCALE MODELING; Nicholas Thornburg Polymer Distribution Models for Polyether	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability; Yichen Zhuang Electrification of Steam Methane Reforming by Joule Heating of Nickel-Coated High-Resistance	Applications of Countercurrent Multiphase Reactors for Maximizing Performance James R. Lattner Overcoming the Selectivity-Conversion Tradeoff during Forced Dynamic Operation of
	and Utilization of Nitrates for Resilient Nitrogen Circular Economy Meenesh Singh Catalytic consequences of plastic additives on bifunctional reactions of	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT KINETIC ANALYSIS AND MULTISCALE MODELING; Nicholas Thornburg Polymer Distribution Models for Polyether Polyols;	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability; Yichen Zhuang Electrification of Steam Methane Reforming by Joule Heating of Nickel-	Applications of Countercurrent Multiphase Reactors for Maximizing Performance James R. Lattner Overcoming the Selectivity-Conversion Tradeoff during Forced Dynamic Operation of Ethane Oxidative Dehydrogenation;
4:10-4:30 PM	and Utilization of Nitrates for Resilient Nitrogen Circular Economy Meenesh Singh Catalytic consequences of plastic additives on bifunctional reactions of alkanes Gina Noh	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT KINETIC ANALYSIS AND MULTISCALE MODELING; Nicholas Thornburg Polymer Distribution Models for Polyether Polyols; Arjun Raghuraman	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability; Yichen Zhuang Electrification of Steam Methane Reforming by Joule Heating of Nickel-Coated High-Resistance Wires; Elmer Ledesma	Applications of Countercurrent Multiphase Reactors for Maximizing Performance James R. Lattner Overcoming the Selectivity-Conversion Tradeoff during Forced Dynamic Operation of Ethane Oxidative Dehydrogenation; Austin Morales
	and Utilization of Nitrates for Resilient Nitrogen Circular Economy Meenesh Singh Catalytic consequences of plastic additives on bifunctional reactions of alkanes	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT KINETIC ANALYSIS AND MULTISCALE MODELING; Nicholas Thornburg Polymer Distribution Models for Polyether Polyols; Arjun Raghuraman From Apparent Kinetics to	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability; Yichen Zhuang Electrification of Steam Methane Reforming by Joule Heating of Nickel-Coated High-Resistance Wires; Elmer Ledesma BENCH-SCALE MULTITUBULAR MEMBRANE	Applications of Countercurrent Multiphase Reactors for Maximizing Performance James R. Lattner Overcoming the Selectivity-Conversion Tradeoff during Forced Dynamic Operation of Ethane Oxidative Dehydrogenation; Austin Morales IGNITION- EXTINCTION
4:10-4:30 PM	and Utilization of Nitrates for Resilient Nitrogen Circular Economy Meenesh Singh Catalytic consequences of plastic additives on bifunctional reactions of alkanes Gina Noh	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT KINETIC ANALYSIS AND MULTISCALE MODELING; Nicholas Thornburg Polymer Distribution Models for Polyether Polyols; Arjun Raghuraman From Apparent Kinetics to Microkinetics:	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability; Yichen Zhuang Electrification of Steam Methane Reforming by Joule Heating of Nickel-Coated High-Resistance Wires; Elmer Ledesma BENCH-SCALE MULTI-TUBULAR MEMBRANE CONTACTOR	Applications of Countercurrent Multiphase Reactors for Maximizing Performance James R. Lattner Overcoming the Selectivity-Conversion Tradeoff during Forced Dynamic Operation of Ethane Oxidative Dehydrogenation; Austin Morales IGNITION-
4:10-4:30 PM	and Utilization of Nitrates for Resilient Nitrogen Circular Economy Meenesh Singh Catalytic consequences of plastic additives on bifunctional reactions of alkanes Gina Noh	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT KINETIC ANALYSIS AND MULTISCALE MODELING; Nicholas Thornburg Polymer Distribution Models for Polyether Polyols; Arjun Raghuraman From Apparent Kinetics to Microkinetics: Leveraging Power duLaw Models for	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability; Yichen Zhuang Electrification of Steam Methane Reforming by Joule Heating of Nickel-Coated High-Resistance Wires; Elmer Ledesma BENCH-SCALE MULTI-TUBULAR MEMBRANE CONTACTOR REACTOR FOR FUEL PRODUCTION;	Applications of Countercurrent Multiphase Reactors for Maximizing Performance James R. Lattner Overcoming the Selectivity-Conversion Tradeoff during Forced Dynamic Operation of Ethane Oxidative Dehydrogenation; Austin Morales IGNITION- EXTINCTION ANALYSIS OF OXIDATIVE DEHYDROGENATION
4:10-4:30 PM	and Utilization of Nitrates for Resilient Nitrogen Circular Economy Meenesh Singh Catalytic consequences of plastic additives on bifunctional reactions of alkanes Gina Noh	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT KINETIC ANALYSIS AND MULTISCALE MODELING; Nicholas Thornburg Polymer Distribution Models for Polyether Polyols; Arjun Raghuraman From Apparent Kinetics to Microkinetics: Leveraging Power	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability; Yichen Zhuang Electrification of Steam Methane Reforming by Joule Heating of Nickel-Coated High-Resistance Wires; Elmer Ledesma BENCH-SCALE MULTI-TUBULAR MEMBRANE CONTACTOR REACTOR FOR FUEL	Applications of Countercurrent Multiphase Reactors for Maximizing Performance James R. Lattner Overcoming the Selectivity-Conversion Tradeoff during Forced Dynamic Operation of Ethane Oxidative Dehydrogenation; Austin Morales IGNITION- EXTINCTION ANALYSIS OF OXIDATIVE
4:10-4:30 PM	and Utilization of Nitrates for Resilient Nitrogen Circular Economy Meenesh Singh Catalytic consequences of plastic additives on bifunctional reactions of alkanes Gina Noh	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT KINETIC ANALYSIS AND MULTISCALE MODELING; Nicholas Thornburg Polymer Distribution Models for Polyether Polyols; Arjun Raghuraman From Apparent Kinetics to Microkinetics: Leveraging Power duLaw Models for Reaction Mechanism Identification; Fernando Vega-	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability; Yichen Zhuang Electrification of Steam Methane Reforming by Joule Heating of Nickel-Coated High-Resistance Wires; Elmer Ledesma BENCH-SCALE MULTI-TUBULAR MEMBRANE CONTACTOR REACTOR FOR FUEL PRODUCTION;	Applications of Countercurrent Multiphase Reactors for Maximizing Performance James R. Lattner Overcoming the Selectivity-Conversion Tradeoff during Forced Dynamic Operation of Ethane Oxidative Dehydrogenation; Austin Morales IGNITION- EXTINCTION ANALYSIS OF OXIDATIVE DEHYDROGENATION OF ETHANE OVER M1 CATALYST IN A MONOLITH
4:10-4:30 PM	and Utilization of Nitrates for Resilient Nitrogen Circular Economy Meenesh Singh Catalytic consequences of plastic additives on bifunctional reactions of alkanes Gina Noh	PELLETS TO PACKED BEDS: UNDERSTANDING CrOx/Al2O3 CATALYST DEACTIVATION DURING PROPANE DEHYDROGENATION VIA TRANSIENT KINETIC ANALYSIS AND MULTISCALE MODELING; Nicholas Thornburg Polymer Distribution Models for Polyether Polyols; Arjun Raghuraman From Apparent Kinetics to Microkinetics: Leveraging Power duLaw Models for Reaction Mechanism Identification;	Experimental Analysis of a Sabatier reactor for Renewable Natural Gas Generation from Biogas: Ignition, Parameter Sensitivity Analysis, and Stability; Yichen Zhuang Electrification of Steam Methane Reforming by Joule Heating of Nickel-Coated High-Resistance Wires; Elmer Ledesma BENCH-SCALE MULTI-TUBULAR MEMBRANE CONTACTOR REACTOR FOR FUEL PRODUCTION;	Applications of Countercurrent Multiphase Reactors for Maximizing Performance James R. Lattner Overcoming the Selectivity-Conversion Tradeoff during Forced Dynamic Operation of Ethane Oxidative Dehydrogenation; Austin Morales IGNITION- EXTINCTION ANALYSIS OF OXIDATIVE DEHYDROGENATION OF ETHANE OVER M1 CATALYST IN A

		Day 2: February 1	8	
8:15-9:15 AM	Plenary 2: Current Trend	s and Opportunities for Read Pipel Shailendra Borda		ne Pharmaceutical R&D
9:15-9:30 AM		Snallendra Borda Refreshme	,	
9:30-10:30		Plenary: Aris A		
AM	Т		gens in the Energy Transition	1
		Praveen Bollini (Uni		
10:30-10:45		Refreshme	ent Break	
AM				
	Room 1	Room 2	Room 3	Room 4
	Computational Chemistry and Catalysis,	Automation/Digitization in Reaction	Reaction Engineering for the Energy	Novel Reactors and Process
	Data Science, ML: 1	Engineering: 1	Transition: 4	Intensification: 4
	Milad Abolhasani (NCSU),	Chairs: Jake Gold (Dow),	Chairs: Hsi-Wu Wong	Chairs: Fateme Rezaei
	Gaurav Giri (ÙVa)	Meenesh Singh (UIC)	(UMass Lowell), Kevin	(U. Miami), Onkar
			Modica (Dow)	Manjrekar (Abbvie)
40.45.44.05	Literary Marie and an Marie linear	Advantage of Allbarad	DVALANAIO	La alta ala anata da
10:45-11:05 AM	Using Molecular Modeling and Machine Learning to	Advantages of Al-based models over mechanistic	DYNAMIC OPTIMIZATION OF	In-situ characterization of Ni-BaH ₂ catalyst for low
Aivi	Address Stability	models in the dynamic	ELECTRIFIED ETHANE	temperature ammonia
	Challenges for Zeolite	optimization of fixed- and	CRACKING FOR COST-	production through
	Catalysts	fluidized-bed reactors;	EFFECTIVE ETHYLENE	chemical looping;
	Chris Paolucci	Mauro Andrea	PRODUCTION WITH	Antoine Dechany
		Pappagallo	LOW CO ₂ EMISSIONS;	
11:05-11:25	Application of surrogate	HYBRID MODELLING	Alexandre Cattry Towards the complete	METHANE PARTIAL
AM	modelling to accelerate	FOR THE DYNAMIC	mineralization of PFOA	OXIDATION (MPO)
, dvi	design space exploration	SIMULATION OF	with a pilot-scale UV-	UNDER PERIODIC
	for catalytic reactor	WATER GAS SHIFT	light, boron-nitride—	REACTION
	systems;	AND METHANOL	based recirculating	CONDITIONS ON
	Stepan Spatenka	SYNTHESIS	reactor unit;	PT/AL ₂ O ₃ ;
		REACTIONS	Juan Donoso	Surya Solanki
		NETWORK; <i>Harry Kay</i>		
11:25-11:45	Advantages in the use of	Investigating a Novel		IGNITION THRESHOLD
AM	Al-based regressions for	Flash Thermal		OF ARGON DILUTED
	the kinetic modelling of	Racemisation Reaction		METHANE IN
	industrial catalysts;	Operated Under		ATMOSPHERIC
	Hugo Petremand	Transient Flow Regimes through Kinetic		PLASMA-LIQUID MULTIPHASE
		Modelling;		MICROREACTOR;
		Harry Kay		Sudip Das
11:45-1:15 PM		Lunch o	on own	
1:15-2:15 PM	Pan	el Discussion: Vision 2050: F	Reaction Engineering Roadm	ар
		Facilitator: Ryan	Hartman (NYU)	
2:15-2:30 PM	Panelists: Dan Hickman (Dow), Kim McAuley (Queen Refreshme	s University), Michael Harol	d (University of Houston)
2.10-2.30 PIVI	In Honor of the	Automation/Digitization	Reaction Engineering	Novel Reactors and
	Amundson Awardee: 1	in Reaction	for the Energy	Process
	Chairs: Ashish	Engineering: 2	Transition: 5	Intensification: 5
	Mhadeshwar	Chairs: Alan	Chairs Jeremy Bedard	Chairs: Saurabh
	(ExxonMobil), Jeffrey	Stottlemeyer (Dow), Ram	(Oxy), Nick Thornburg	Bhandari (Dow), Jiakang
	Rimer (University of Houston)	Ratnakar (Shell)	(NREL)	Chen (BASF)
2:30-2:50 PM	Reaction Engineering: The	Keynote	1071: MICROKINETIC	Forced Dynamic
	ISCRE Board's 2050		MODELING OF	Operation of Propylene
	Perspective		OXIDATIVE COUPLING	Selective Oxidation to
	Dan Hickman		OF METHANE: CAN	Acrolein in Catalytic
			BREAK THE SCALING	Foam Reactor: Reactor Model Development
			RELATIONSHIP?;	Kai Wu
			Julian Ufert	
2:50-3:10 PM	Propane Dehydrogenation	APPLICATION OF	Thermodynamic Analysis	Can methanol synthesis
	in Electrifiable Carbon	DYNAMIC REACTION	Based Programmed	be enhanced at low
	Membrane Reactor	SCREENING AND	Heating Strategies to	pressure with continuous
L	Dongxia Liu	DEVELOPMENT OF A 2-	Limit Carbon Depositions	operation?;

3:10-3:30 PM	Multiple Rate States in Precious Metal Catalyzed	D REACTOR MODEL FOR ACCURATE KINETIC ANALYSIS IN TUBULAR REACTORS; Daniel Trahan Model-Based Fault Diagnosis for Closed-	in Electrified Modular Methane Reformer Reactors; Collins Don-Pedro ISOPOTENTIAL TITRATION OF	Chiara Berretta Experimental and modeling of reactive
	Oxidation Reactions: Kinetic Requirements, Multiplicity Features and Rate Determining Steps Michael P. Harold	loop Feedback controlled Safety-Critical Chemical Reactors: An Experimental Study; Pu Du	AMMONIA ELECTRON TRANSFER ON METAL CATALYSTS; Jesse Canavan	distillation applied for an immobilized enzymatic reaction coated on structured internals; Nicolas Chaussard
3:30-3:50 PM		Refreshme		
0.50.440 PM	In Honor of the Amundson Awardee: 2 Chairs: Ashish Mhadeshwar (ExxonMobil), Jeffrey Rimer (University of Houston)	Automation/Digitization in Reaction Engineering: 3 Chairs: Alan Stottlemeyer (Dow), Ram Ratnakar (Shell)	Reaction Engineering for Materials Synthesis Jeremy Bedard (Oxy), Nick Thornburg (NREL)	Computational Chemistry and Catalysis, Data Science, ML Chairs: Saurabh Bhandari (Dow), Jiakang Chen (BASF)
3:50-4:10 PM	Joule heated structured reactors: combining electrification with process intensification <i>Enrico Tronconi</i>	Digital Twin Concept For Hydrogen Production From Biogas; Razieh Etezadi	Mechanistic Insights into Metal-Organic Framework Formation from In-Situ X-Ray Scattering Data Gaurav Giri	COMPUTATIONAL INSIGHTS INTO THE ADSORPTION BEHAVIOR OF H2 AND CO2 ON CU AND ZNO SURFACES FOR METHANOL SYNTHESIS; Haseen Siddiqui
4:10-4:30 PM	Advancing Product Analysis and Polymer Recycling Strategies with Two-Dimensional Gas Chromatography (GC×GC) Hilal Ezgi Toraman	CatTestHub: A Benchmarking Database of Experimental Heterogeneous Catalysis and Insights for Methanol Decomposition; Atharva Burte	A NOVEL PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION (PECVD) REACTOR SYSTEM FOR FABRICATION OF SIC- TYPE CERAMIC FILMS AND MEMBRANES; Farnaz Tabarkhoon	First principles insights into effect of charge condensation on water gas shift reaction mechanism; Venkata Rohit Punyapu
4:30-4:50 PM	Intensification of polyolefin plastic waste hydroconversion in small alkane solvents Pavel Kots	From Laboratory to Pilot: Digital Design Case Study for Cost Effective Catalytic Reactor Scale Up; Shahin Goodarznia	Synthesis of Brightly Fluorescent ZnSe Quantum Dots using Air- Stable Precursors; Ali Rad	Machine Learning for Parametric Sensitivity of Chemical Reactors; Joaquin Herrero

Tuesday, Feb 18: Conference Banquet (18:00-21:30)

		Day 3: February 19		
8:15-9:15 AM	Plenary 3: Towards Electrifying Chemical Manufacturing Using Electrolysis			
	Paul Kenis			
9:15-9:30 AM	Refreshment Break			
	Room 1	Room 2	Room 3	Room 4
	CO2 Capture and	Biopharmaceutical	General Reaction	General Reaction
	Conversion: 1	Reaction Engineering:	Engineering: 1	Engineering: 2
	Chairs: Gina Noh (Penn	1	Chairs: Sribala	Chairs: David Simakov
	State), Sweta Somasi	Chairs: Bryan Patel	Gorugantu (UH),	(U. Waterloo), Carsten
	(Dow)	(Exxon), Jane Shi	Sukaran Arora (Dow)	Sievers (Georgia Tech)
		(Dow)		
9:30-9:50 AM	Reactive Carbon Capture:	Development of	Academic-Industry	1093PROXIMITY
	Cooperative and	continuous	Sabbaticals: An	EFFECTS FOR
	Bifunctional Adsorbent-	hydrogenation for	Academic Reaction	IMPROVING ETHYL
	Catalyst Materials and	pharmaceutical	Engineer's	ACETATE
	Process Integration for a	intermediate from	Perspective;	SELECTIVITY IN THE
	New Carbon Economy	Laboratory to Pilot	Ryan Hartman	DEHYDROGENATIVE
	Fateme Rezaei	plant;		COUPLING OF

				ETHANOLOVED
		Onkar Manjrekar		ETHANOL OVER SUPPORTED CU
				CATALYSTS;
				Varad Joshi
9:50-10:10 AM	1019: Barriers to Carbon	1055: DEVELOPMENT	1052: Enhancing	1079: Impact of
9.50-10.10 AW	Dioxide Utilization	OF	1052: Enhancing Accuracy in Particle	Intermediate Transfer
	Daniel Hickman	PHARMACEUTICALLY-	Resolved CFD	Rates. Metal Cation
	Damer mckman	RELEVANT	Modeling of Fixed Bed	Mobility, and
		PHOSPHOLIGANDS	Reactors through	Hydrocarbon Pool
		FROM LAB TO PLANT	Integration of Micro-CT	Mechanisms on the
		VIA MULTI-STAGE	and Rigid Body	Rates and Selectivity for
		FLOW CHEMISTRY:	Dynamics:	Tandem CO2
		Eric Sacia	Shashank S. Tiwari	Hydrogenation to Olefins
				and Fuels;
				Fatima Mahnaz
10:10-10:30 AM		DEVELOPMENT AND	CONTROLLING	RELATIONSHIP
	REACTION PATHWAYS,	DEMONSTRATION OF	MOLECULAR	BETWEEN THE
	INTERMEDIATES, AND	AN ULTRA-HIGH	ARCHITECTURES IN	OBSERVED REACTION
	SITE REQUIREMENTS	TEMPERATURE	ALKOXYSILANE	KINETICS OF
	FOR CO2 METHANATION	CONTINUOUS	HYDROLYSIS AND	ETHYLENE TO
	OVER NI-CE MIXED	RACEMIZATION	CONDENSATION:	ETHYLENE OXIDE
	METAL OXIDES;	PROCESS FOR	REACTOR DESIGN	WITH COMPLEX
	Suchetana Samanta	RECYCLE OF	AND PROCESS	CHLORINATION AND
		UNDESIRED	CONSIDERATIONS;	PROCESS
		ATROPISOMER	Zhichen Shi	CONDITIONS EFFECT;
		WASTE STREAM;		Jake Gold
10:30-10:45 PM		Kiersten Campbell Refreshmer	at Prook	
10.30-10.431101	2222			
	CO2 Canture and	Rionharmacoutical	General Reaction	General Reaction
1	CO2 Capture and	Biopharmaceutical	General Reaction	General Reaction
	Conversion: 2	Biopharmaceutical Reaction Engineering: 2	Engineering: 3	Engineering: 4
	Conversion: 2 Chairs: Gina Noh (Penn	Reaction Engineering: 2	Engineering: 3 Chairs: Sribala	Engineering: 4 Chairs: David Simakov
	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi	Reaction Engineering: 2 Chairs: Bryan Patel	Engineering: 3 Chairs: Sribala Gorugantu (UH),	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten
	Conversion: 2 Chairs: Gina Noh (Penn	Reaction Engineering: 2	Engineering: 3 Chairs: Sribala	Engineering: 4 Chairs: David Simakov
10:45-11:05 PM	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi	Engineering: 3 Chairs: Sribala Gorugantu (UH),	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten
10:45-11:05 PM	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow)	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow)	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow)	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech)
10:45-11:05 PM	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of
10:45-11:05 PM	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL FUNCTION MATERIALS FOR REACTIVE CAPTURE OF CO2 FROM DILUTE	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic Modeling of a Double N-Debenzylation in the Production of an Active	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL ROLE OF ACID SITES ON ALUMINOSILICATE-	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of temperature profiles in CO2 methanation reactors by an
10:45-11:05 PM	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL FUNCTION MATERIALS FOR REACTIVE CAPTURE OF CO2 FROM DILUTE STREAM TO PRODUCE	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic Modeling of a Double N-Debenzylation in the Production of an Active Pharmaceutical	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL ROLE OF ACID SITES ON ALUMINOSILICATE- SUPPORTED;	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of temperature profiles in CO2 methanation reactors by an appropriate selection of
10:45-11:05 PM	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL FUNCTION MATERIALS FOR REACTIVE CAPTURE OF CO2 FROM DILUTE STREAM TO PRODUCE CO AT HIGH	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic Modeling of a Double N-Debenzylation in the Production of an Active Pharmaceutical Ingredient	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL ROLE OF ACID SITES ON ALUMINOSILICATE-	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of temperature profiles in CO2 methanation reactors by an appropriate selection of catalyst and dilution
10:45-11:05 PM	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL FUNCTION MATERIALS FOR REACTIVE CAPTURE OF CO2 FROM DILUTE STREAM TO PRODUCE CO AT HIGH SELECTIVITY;	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic Modeling of a Double N-Debenzylation in the Production of an Active Pharmaceutical	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL ROLE OF ACID SITES ON ALUMINOSILICATE- SUPPORTED;	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of temperature profiles in CO2 methanation reactors by an appropriate selection of catalyst and dilution agent;
	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL FUNCTION MATERIALS FOR REACTIVE CAPTURE OF CO2 FROM DILUTE STREAM TO PRODUCE CO AT HIGH SELECTIVITY; Anh To	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic Modeling of a Double N-Debenzylation in the Production of an Active Pharmaceutical Ingredient Neda Nazemifard	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL ROLE OF ACID SITES ON ALUMINOSILICATE- SUPPORTED; Welman Elias	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of temperature profiles in CO2 methanation reactors by an appropriate selection of catalyst and dilution agent; Matteo Percivale
10:45-11:05 PM	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL FUNCTION MATERIALS FOR REACTIVE CAPTURE OF CO2 FROM DILUTE STREAM TO PRODUCE CO AT HIGH SELECTIVITY; Anh To ENHANCED	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic Modeling of a Double N-Debenzylation in the Production of an Active Pharmaceutical Ingredient Neda Nazemifard AUTOMATED	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL ROLE OF ACID SITES ON ALUMINOSILICATE- SUPPORTED; Welman Elias CATALYTIC CO-	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of temperature profiles in CO2 methanation reactors by an appropriate selection of catalyst and dilution agent; Matteo Percivale Kinetic Modeling and
	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL FUNCTION MATERIALS FOR REACTIVE CAPTURE OF CO2 FROM DILUTE STREAM TO PRODUCE CO AT HIGH SELECTIVITY; Anh To ENHANCED PERFORMANCE OF	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic Modeling of a Double N-Debenzylation in the Production of an Active Pharmaceutical Ingredient Neda Nazemifard AUTOMATED DISCOVERY OF	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL ROLE OF ACID SITES ON ALUMINOSILICATE- SUPPORTED; Welman Elias CATALYTIC CO- PYROLYSIS OF	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of temperature profiles in CO2 methanation reactors by an appropriate selection of catalyst and dilution agent; Matteo Percivale Kinetic Modeling and Optimization of a
	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL FUNCTION MATERIALS FOR REACTIVE CAPTURE OF CO2 FROM DILUTE STREAM TO PRODUCE CO AT HIGH SELECTIVITY; Anh To ENHANCED PERFORMANCE OF CU/ZRO2 CATALYSTS IN	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic Modeling of a Double N-Debenzylation in the Production of an Active Pharmaceutical Ingredient Neda Nazemifard AUTOMATED DISCOVERY OF ENZYMATIC	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL ROLE OF ACID SITES ON ALUMINOSILICATE- SUPPORTED; Welman Elias CATALYTIC CO- PYROLYSIS OF PYROLYTIC OILY	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of temperature profiles in CO2 methanation reactors by an appropriate selection of catalyst and dilution agent; Matteo Percivale Kinetic Modeling and Optimization of a Pharmaceutical Process
	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL FUNCTION MATERIALS FOR REACTIVE CAPTURE OF CO2 FROM DILUTE STREAM TO PRODUCE CO AT HIGH SELECTIVITY; Anh To ENHANCED PERFORMANCE OF CU/ZRO2 CATALYSTS IN CO2 HYDROGENATION	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic Modeling of a Double N-Debenzylation in the Production of an Active Pharmaceutical Ingredient Neda Nazemifard AUTOMATED DISCOVERY OF ENZYMATIC REACTION KINETICS	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL ROLE OF ACID SITES ON ALUMINOSILICATE- SUPPORTED; Welman Elias CATALYTIC CO- PYROLYSIS OF PYROLYTIC OILY SLUDGE WITH	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of temperature profiles in CO2 methanation reactors by an appropriate selection of catalyst and dilution agent; Matteo Percivale Kinetic Modeling and Optimization of a Pharmaceutical Process with Uncertain Inputs;
	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL FUNCTION MATERIALS FOR REACTIVE CAPTURE OF CO2 FROM DILUTE STREAM TO PRODUCE CO AT HIGH SELECTIVITY; Anh To ENHANCED PERFORMANCE OF CU/ZRO2 CATALYSTS IN CO2 HYDROGENATION TO METHANOL;	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic Modeling of a Double N-Debenzylation in the Production of an Active Pharmaceutical Ingredient Neda Nazemifard AUTOMATED DISCOVERY OF ENZYMATIC REACTION KINETICS USING SYMBOLIC	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL ROLE OF ACID SITES ON ALUMINOSILICATE- SUPPORTED; Welman Elias CATALYTIC CO- PYROLYSIS OF PYROLYTIC OILY SLUDGE WITH BIOMASS FOR	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of temperature profiles in CO2 methanation reactors by an appropriate selection of catalyst and dilution agent; Matteo Percivale Kinetic Modeling and Optimization of a Pharmaceutical Process
	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL FUNCTION MATERIALS FOR REACTIVE CAPTURE OF CO2 FROM DILUTE STREAM TO PRODUCE CO AT HIGH SELECTIVITY; Anh To ENHANCED PERFORMANCE OF CU/ZRO2 CATALYSTS IN CO2 HYDROGENATION	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic Modeling of a Double N-Debenzylation in the Production of an Active Pharmaceutical Ingredient Neda Nazemifard AUTOMATED DISCOVERY OF ENZYMATIC REACTION KINETICS USING SYMBOLIC REGRESSION AND	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL ROLE OF ACID SITES ON ALUMINOSILICATE- SUPPORTED; Welman Elias CATALYTIC CO- PYROLYSIS OF PYROLYTIC OILY SLUDGE WITH BIOMASS FOR RESOURCE	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of temperature profiles in CO2 methanation reactors by an appropriate selection of catalyst and dilution agent; Matteo Percivale Kinetic Modeling and Optimization of a Pharmaceutical Process with Uncertain Inputs;
	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL FUNCTION MATERIALS FOR REACTIVE CAPTURE OF CO2 FROM DILUTE STREAM TO PRODUCE CO AT HIGH SELECTIVITY; Anh To ENHANCED PERFORMANCE OF CU/ZRO2 CATALYSTS IN CO2 HYDROGENATION TO METHANOL;	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic Modeling of a Double N-Debenzylation in the Production of an Active Pharmaceutical Ingredient Neda Nazemifard AUTOMATED DISCOVERY OF ENZYMATIC REACTION KINETICS USING SYMBOLIC	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL ROLE OF ACID SITES ON ALUMINOSILICATE- SUPPORTED; Welman Elias CATALYTIC CO- PYROLYSIS OF PYROLYTIC OILY SLUDGE WITH BIOMASS FOR	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of temperature profiles in CO2 methanation reactors by an appropriate selection of catalyst and dilution agent; Matteo Percivale Kinetic Modeling and Optimization of a Pharmaceutical Process with Uncertain Inputs;
	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL FUNCTION MATERIALS FOR REACTIVE CAPTURE OF CO2 FROM DILUTE STREAM TO PRODUCE CO AT HIGH SELECTIVITY; Anh To ENHANCED PERFORMANCE OF CU/ZRO2 CATALYSTS IN CO2 HYDROGENATION TO METHANOL;	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic Modeling of a Double N-Debenzylation in the Production of an Active Pharmaceutical Ingredient Neda Nazemifard AUTOMATED DISCOVERY OF ENZYMATIC REACTION KINETICS USING SYMBOLIC REGRESSION AND MODEL-BASED	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL ROLE OF ACID SITES ON ALUMINOSILICATE- SUPPORTED; Welman Elias CATALYTIC CO- PYROLYSIS OF PYROLYTIC OILY SLUDGE WITH BIOMASS FOR RESOURCE RECOVERY;	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of temperature profiles in CO2 methanation reactors by an appropriate selection of catalyst and dilution agent; Matteo Percivale Kinetic Modeling and Optimization of a Pharmaceutical Process with Uncertain Inputs;
	Conversion: 2 Chairs: Gina Noh (Penn State), Sweta Somasi (Dow) DEVELOPMENT OF DUAL FUNCTION MATERIALS FOR REACTIVE CAPTURE OF CO2 FROM DILUTE STREAM TO PRODUCE CO AT HIGH SELECTIVITY; Anh To ENHANCED PERFORMANCE OF CU/ZRO2 CATALYSTS IN CO2 HYDROGENATION TO METHANOL;	Reaction Engineering: 2 Chairs: Bryan Patel (Exxon), Jane Shi (Dow) Transport-Kinetic Modeling of a Double N-Debenzylation in the Production of an Active Pharmaceutical Ingredient Neda Nazemifard AUTOMATED DISCOVERY OF ENZYMATIC REACTION KINETICS USING SYMBOLIC REGRESSION AND MODEL-BASED DESIGN OF	Engineering: 3 Chairs: Sribala Gorugantu (UH), Sukaran Arora (Dow) PROMOTIONAL ROLE OF ACID SITES ON ALUMINOSILICATE- SUPPORTED; Welman Elias CATALYTIC CO- PYROLYSIS OF PYROLYTIC OILY SLUDGE WITH BIOMASS FOR RESOURCE RECOVERY; Himanshi Sharma	Engineering: 4 Chairs: David Simakov (U. Waterloo), Carsten Sievers (Georgia Tech) Optimization of temperature profiles in CO2 methanation reactors by an appropriate selection of catalyst and dilution agent; Matteo Percivale Kinetic Modeling and Optimization of a Pharmaceutical Process with Uncertain Inputs;